The combinatorics of gaps between prime numbers

Fred B. Holt, with Helgi Rudd

fbholt62@gmail.com

A presentation of a paper at Connections in Discrete Mathematics In honor of Ron Graham's 80th birthday

Simon Fraser University 15-19 June 2015

Overview

- We study the cycle of gaps at each stage of Eratosthenes sieve.
 - Identify the recursion from one cycle of gaps to the next
 - Construct a discrete dynamic model for the populations of gaps and of constellations of gaps
 - **▶** Beautifully lucky! simple eigenstructure
 - Asymptotic relative populations of gaps
 - Polignac result and Hardy & Littlewood's Conjecture B
 - Strong Polignac result on CPAP

These are actual populations in the sieve, not probabilities.

The cycle of gaps G(p#)

1 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
1 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 $G(3\#) = 4\ 2$

1 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

6 4 2 4 2 4 6 2 6 4 2 4 2 4

G(5#) = 64242462

Recursive construction

R1. The next prime is $p_{k+1} = g_1 + 1$

 $p_{k+1} = 7$

- R2. Concatenate p_{k+1} copies of $G(p_k \#)$.
- R3. Close gaps after first gap and as indicated by elementwise product $p_{k+1}^*G(p_k^*)$.

Example: G(5#) = 64242462 to G(7#)

Theorem (if g < 2p)

- Lemma: Every closure of adjacent gaps in $G(p_k\#)$ occurs exactly once in forming $G(p_{k+1}\#)$.
 - **↗** Proof: Chinese Remainder Theorem.

Theorem: For a constellation s of length j, if $|s| < 2p_{k+1}$, then the population $n_{s,j}(p_{k+1}\#)$ is given by

$$n_{s,j}(p_{k+1}\#) = (p_{k+1}-j-1) n_{s,j}(p_k\#) + n_{s,j+1}(p_k\#)$$

Driving terms for s of length j+1

Discrete dynamic model for gaps

Express as a linear system:

$$n_g(p_k\#) = M(p_k) n_g(p_{k-1}\#)$$

$$= M(p_k) M(p_{k-1}) ... M(p_1) n_g(p_0\#)$$

$$= M^k n_g(p_0\#)$$

Notes: Definition of M^k.

Need p_0 with $g < 2p_1$ & initial conditions $n_g(p_0\#)$.

The system depends on p.

The initial conditions depend on g.

Transfer matrix for $n_g(p_o#)$

Populations of gaps grow super-exponentially by factors of (p_k-2) .

So we normalize by the population of 2's, which has no driving terms with j > 1.

$$n_{2,1}(p\#) = \prod_{3}^{p} (q-2)$$

Normalized model for gaps

$$w_{g,j}(p\#) = \frac{n_{g,j}(p\#)}{n_{2,1}(p\#)}$$

$$j=1$$

$$j=2$$

$$p-2$$

$$p-3$$

$$p-4$$

$$p-3$$

$$p-4$$

$$p-5$$

$$p-2$$

$$p-2$$

$$p-2$$

$$p-3$$

$$p-4$$

$$p-4$$

$$p-3$$

$$p-4$$

$$p-4$$

$$p-4$$

$$p-5$$

$$p-6$$

$$p-7$$

$$p-7$$

$$p-7$$

$$p-8$$

$$p-$$

Discrete model for relative populations of a gap g to the gap 2:

$$w_g(p_k\#) = M(p_k) w_g(p_{k-1}\#) = M^k w_g(p_0\#)$$

with transfer matrix

$$M(p) = \begin{bmatrix} 1 & \frac{1}{p-2} \\ \frac{p-3}{p-2} & \frac{2}{p-2} \\ \frac{p-4}{p-2} & \frac{3}{p-2} \\ \vdots & \ddots & \ddots \end{bmatrix}$$

Eigenstructure – beautiful!

$$M(p) = \begin{bmatrix} 1 & \frac{1}{p-2} & & & & \\ & \frac{p-3}{p-2} & \frac{2}{p-2} & & & \\ & & \frac{p-4}{p-2} & \frac{3}{p-2} & & \\ & & \ddots & \ddots & \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & & \\ 1 & -2 & 3 & -4 & & & \\ & 1 & -3 & 6 & \ddots & & \\ & & 1 & -4 & \ddots & & \\ & & & 1 & \ddots & & \\ & & & & 1 & \ddots & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

Simple Eigenstructure for M^k

$$M^{k} = M(p_{k}) M(p_{k-1}) M(p_{k-2}) ... M(p_{1})$$

$$= \begin{bmatrix} 1 & -1 & 1 & -1 & 1 \\ 1 & -2 & 3 & -4 \\ & 1 & -3 & 6 & \ddots \\ & & 1 & -4 & \ddots \end{bmatrix} \begin{bmatrix} 1 & & & & & \\ \prod_{p_1} \frac{p-3}{p-2} & & & & \\ \prod_{p_1} \frac{p-4}{p-2} & & & & \\ & & 1 & 4 & \ddots \\ & & & & 1 & 4 & \ddots \end{bmatrix}$$

Asymptotics

Expand the right-hand side, in terms of the eigenstructure:

$$w_g(p_k\#) = M^k w_g(p_0\#)$$

$$= (L_1 w_g(p_0\#)) R_1 + \lambda_2^k (L_2 w_g(p_0\#)) R_2 + \lambda_3^k (L_3 w_g(p_0\#)) R_3 + ...$$

We have the very simple values: $L_1 = <1>$, $\lambda_1 = 1$, $R_1 = e_1$

So the asymptotic ratio of the population of the gap g to the gap 2 is given by

$$w_g^{\infty} = \sum_j w_{g,j}(p_0 \#)$$

Condition: p_0 is such that $g < 2p_1$

Polignac result and HL Conjecture B

- Polignac conjecture: every even g occurs as a gap between consecutive primes infinitely often
- Hardy & Littlewood Conjecture B: for any even g, the number of prime pairs p and p+g such that p+g < n is approximately</p>

$$2C_2 \frac{n}{(\log n)^2} \prod_{\substack{q>2 \ q-2}} \frac{q-1}{q-2}$$

Our result: for every even g, the gap g arises in Eratosthenes sieve and its relative population tends toward

$$w_g^{\infty} = \prod_{\substack{q>2\\q \mid g}} \frac{q-1}{q-2}$$

Examples

For $p_0=5$, G(5#)=64242462

	g=2	4	6	8	10	12	14
j=1	3	3	2	0	0	0	0
j=2	0	0	4	2	2	0	0
j=3	0	0	0	1	2	4	1
j=4	0	0	0	0	0	2	2
Σ n $_{ m g}$	3	3	6	3	4	6	3
Σ w $_{ m g}$	1	1	2	1	4/3	2	1
wg	1	1	2	1	4/3	2	6/5

Examples

For $p_0=5$, G(5#)=64242462

	g=2	4	6	8	10	12	14
j=1	3	3	2	0	0	0	0
j=2	0	0	4	2	2	0	0
j=3	0	0	0	1	2	4	1
j=4	0	0	0	0	0	2	2
Σ n $_{ m g}$	3	3	6	3	4	6	3
Σ w $_{g}$	1	1	2	1	4/3	2	1
w _g	1	1	2	1	4/3	2	6/5

Outline of proof: cycle of gaps G(n)

For even number g, let Q be the product of unique prime factors dividing g.

Form G(Q).

Recursion from G(n) to G(pn).

Each of the $\phi(Q)$ gaps starts a driving term for g – by going g/Q times around the cycle G(Q).

Now fill in G(Q) to obtain G(p#).

Proof (cont'd): asymptotics

Let q be the largest prime factor of Q.

Then
$$\sum_{j} n_{g,j}(q\#) = \phi(Q) \prod_{(p,Q)=1} p-2$$

We don't know the lengths, but $L_1 = <1>$.

and
$$\sum_{j} w_{g,j}(q\#) = \phi(Q) \prod_{(p,Q)=1} p-2 / \prod_{p=3}^{q} p-2$$

$$= \prod_{p>2} \frac{p-1}{p-2}$$
This

p | Q

This is
$$w_g^{\infty}$$

Model for constellations of length j

$$M_{j}(p) = \begin{bmatrix} 1 & \frac{1}{p-j-1} \\ \frac{p-j-2}{p-j-1} & \frac{2}{p-j-1} \\ \frac{p-j-3}{p-j-1} & \frac{3}{p-j-1} \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Normalize by p-j-1.

$$M_{j}^{k} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 \\ & 1 & -2 & 3 & -4 \\ & & 1 & -3 & 6 \\ & & & 1 & -4 \\ & & & & 1 \\ & & & & & & 1 \end{bmatrix}$$

$$\prod_{p_{1}}^{p_{k}} \frac{p-j-2}{p-j-1} \\
\prod_{p_{1}}^{p_{k}} \frac{p-j-3}{p-j-1} \\
\cdot$$

R

$$\Lambda^k$$

Strong Polignac result on CPAP

- j+1 consecutive primes in arithmetic progression correspond to a constellation gg...g of length j.
- Feasibility: Let gg..g be a constellation of length j, then g must be divisible by every prime q <= j+1.

Our result: Let g be any even number, then for every feasible j the constellation gg...g arises in Eratosthenes sieve with relative population approaching

$$w_{gg..g}^{\infty} = \frac{\prod_{q>2; q \mid g} q - 1}{\prod_{q>j+1; q \mid g} q - j - 1}$$

Examples

ggg	j	Q	w [∞]
6 6	2	6	2
6 6 6	3	6	2
12, 12, 12	3	6	2
72, 72, 72	3	6	2
30, 30, 30	3	30	8
396, 396, 396	3	66	20/7
30, 30, 30, 30	4	30	8
3060, 3060, 3060, 3060	4	510	32/3
30, 30, 30, 30	5	30	8

On twin primes (g=2)

Constellations with 2's:

S	j	w
2 4 2	3	1
2 10 2	3	8/3
2 10 2 10 2	5	144/35
2 10 2 10 2 4 2 10 2 10 2	11	24

six pairs of twin primes in a span of 56 -!!

Surviving the sieve

How does survival work, from the cycle of gaps G(p#) to gaps between primes?

How does the model for survival depend on the length j?

Is survival at all fair?